Papers
Topics
Authors
Recent
2000 character limit reached

Efficient estimation of functionals in nonparametric boundary models (1407.4229v3)

Published 16 Jul 2014 in math.ST and stat.TH

Abstract: For nonparametric regression with one-sided errors and a boundary curve model for Poisson point processes we consider the problem of efficient estimation for linear functionals. The minimax optimal rate is obtained by an unbiased estimation method which nevertheless depends on a H\"older condition or monotonicity assumption for the underlying regression or boundary function. We first construct a simple blockwise estimator and then build up a nonparametric maximum-likelihood approach for exponential noise variables and the point process model. In that approach also non-asymptotic efficiency is obtained (UMVU: uniformly minimum variance among all unbiased estimators).The proofs rely essentially on martingale stopping arguments for counting processes and the point process geometry. The estimators are easily computable and a small simulation study confirms their applicability.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.