Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive function estimation in nonparametric regression with one-sided errors (1305.6430v3)

Published 28 May 2013 in math.ST and stat.TH

Abstract: We consider the model of nonregular nonparametric regression where smoothness constraints are imposed on the regression function $f$ and the regression errors are assumed to decay with some sharpness level at their endpoints. The aim of this paper is to construct an adaptive estimator for the regression function $f$. In contrast to the standard model where local averaging is fruitful, the nonregular conditions require a substantial different treatment based on local extreme values. We study this model under the realistic setting in which both the smoothness degree $\beta>0$ and the sharpness degree $\mathfrak {a}\in(0,\infty)$ are unknown in advance. We construct adaptation procedures applying a nested version of Lepski's method and the negative Hill estimator which show no loss in the convergence rates with respect to the general $L_q$-risk and a logarithmic loss with respect to the pointwise risk. Optimality of these rates is proved for $\mathfrak{a}\in(0,\infty)$. Some numerical simulations and an application to real data are provided.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.