Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sea Level Anomaly Prediction using Recurrent Neural Networks (1710.07099v1)

Published 19 Oct 2017 in cs.CV

Abstract: Sea level change, one of the most dire impacts of anthropogenic global warming, will affect a large amount of the world's population. However, sea level change is not uniform in time and space, and the skill of conventional prediction methods is limited due to the ocean's internal variabi-lity on timescales from weeks to decades. Here we study the potential of neural network methods which have been used successfully in other applications, but rarely been applied for this task. We develop a combination of a convolutional neural network (CNN) and a recurrent neural network (RNN) to ana-lyse both the spatial and the temporal evolution of sea level and to suggest an independent, accurate method to predict interannual sea level anomalies (SLA). We test our method for the northern and equatorial Pacific Ocean, using gridded altimeter-derived SLA data. We show that the used network designs outperform a simple regression and that adding a CNN improves the skill significantly. The predictions are stable over several years.

Citations (37)

Summary

We haven't generated a summary for this paper yet.