Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A case study on English-Malayalam Machine Translation (1702.08217v1)

Published 27 Feb 2017 in cs.CL

Abstract: In this paper we present our work on a case study on Statistical Machine Translation (SMT) and Rule based machine translation (RBMT) for translation from English to Malayalam and Malayalam to English. One of the motivations of our study is to make a three way performance comparison, such as, a) SMT and RBMT b) English to Malayalam SMT and Malayalam to English SMT c) English to Malayalam RBMT and Malayalam to English RBMT. We describe the development of English to Malayalam and Malayalam to English baseline phrase based SMT system and the evaluation of its performance compared against the RBMT system. Based on our study the observations are: a) SMT systems outperform RBMT systems, b) In the case of SMT, English - Malayalam systems perform better than that of Malayalam - English systems, c) In the case RBMT, Malayalam to English systems are performing better than English to Malayalam systems. Based on our evaluations and detailed error analysis, we describe the requirements of incorporating morphological processing into the SMT to improve the accuracy of translation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sreelekha S (9 papers)
  2. Pushpak Bhattacharyya (153 papers)
Citations (7)