Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Translation Approaches and Survey for Indian Languages (1701.04290v1)

Published 16 Jan 2017 in cs.CL

Abstract: In this study, we present an analysis regarding the performance of the state-of-art Phrase-based Statistical Machine Translation (SMT) on multiple Indian languages. We report baseline systems on several language pairs. The motivation of this study is to promote the development of SMT and linguistic resources for these language pairs, as the current state-of-the-art is quite bleak due to sparse data resources. The success of an SMT system is contingent on the availability of a large parallel corpus. Such data is necessary to reliably estimate translation probabilities. We report the performance of baseline systems translating from Indian languages (Bengali, Guajarati, Hindi, Malayalam, Punjabi, Tamil, Telugu and Urdu) into English with average 10% accurate results for all the language pairs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nadeem Jadoon Khan (1 paper)
  2. Waqas Anwar (2 papers)
  3. Nadir Durrani (48 papers)
Citations (15)