2000 character limit reached
Fano's inequality for random variables (1702.05985v3)
Published 20 Feb 2017 in math.ST, cs.IT, math.IT, and stat.TH
Abstract: We extend Fano's inequality, which controls the average probability of events in terms of the average of some $f$--divergences, to work with arbitrary events (not necessarily forming a partition) and even with arbitrary $[0,1]$--valued random variables, possibly in continuously infinite number. We provide two applications of these extensions, in which the consideration of random variables is particularly handy: we offer new and elegant proofs for existing lower bounds, on Bayesian posterior concentration (minimax or distribution-dependent) rates and on the regret in non-stochastic sequential learning.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.