Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalization Error Bounds Via Rényi-, $f$-Divergences and Maximal Leakage (1912.01439v3)

Published 1 Dec 2019 in cs.IT, cs.LG, math.IT, and math.PR

Abstract: In this work, the probability of an event under some joint distribution is bounded by measuring it with the product of the marginals instead (which is typically easier to analyze) together with a measure of the dependence between the two random variables. These results find applications in adaptive data analysis, where multiple dependencies are introduced and in learning theory, where they can be employed to bound the generalization error of a learning algorithm. Bounds are given in terms of Sibson's Mutual Information, $\alpha-$Divergences, Hellinger Divergences, and $f-$Divergences. A case of particular interest is the Maximal Leakage (or Sibson's Mutual Information of order infinity), since this measure is robust to post-processing and composes adaptively. The corresponding bound can be seen as a generalization of classical bounds, such as Hoeffding's and McDiarmid's inequalities, to the case of dependent random variables.

Citations (71)

Summary

We haven't generated a summary for this paper yet.