Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Scene Parsing with Predictive Feature Learning (1612.00119v2)

Published 1 Dec 2016 in cs.CV

Abstract: In this work, we address the challenging video scene parsing problem by developing effective representation learning methods given limited parsing annotations. In particular, we contribute two novel methods that constitute a unified parsing framework. (1) \textbf{Predictive feature learning}} from nearly unlimited unlabeled video data. Different from existing methods learning features from single frame parsing, we learn spatiotemporal discriminative features by enforcing a parsing network to predict future frames and their parsing maps (if available) given only historical frames. In this way, the network can effectively learn to capture video dynamics and temporal context, which are critical clues for video scene parsing, without requiring extra manual annotations. (2) \textbf{Prediction steering parsing}} architecture that effectively adapts the learned spatiotemporal features to scene parsing tasks and provides strong guidance for any off-the-shelf parsing model to achieve better video scene parsing performance. Extensive experiments over two challenging datasets, Cityscapes and Camvid, have demonstrated the effectiveness of our methods by showing significant improvement over well-established baselines.

Citations (110)

Summary

We haven't generated a summary for this paper yet.