Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces (1612.00243v2)

Published 1 Dec 2016 in math.FA, math-ph, math.AP, and math.MP

Abstract: We prove scaling invariant Gagliardo-Nirenberg type inequalities of the form $$|\varphi|{Lp(\mathbb{R}d)}\le C|\varphi|{\dot H{s}(\mathbb{R}d)}{\beta} \left(\iint_{\mathbb{R}d \times \mathbb{R}d} \frac{|\varphi (x)|q\,|\varphi (y)|q}{|x - y|{d-\alpha}} dx dy\right){\gamma},$$ involving fractional Sobolev norms with $s>0$ and Coulomb type energies with $0<\alpha<d$ and $q\ge 1$. We establish optimal ranges of parameters for the validity of such inequalities and discuss the existence of the optimisers. In the special case $p=\frac{2d}{d-2s}$ our results include a new refinement of the fractional Sobolev inequality by a Coulomb term. We also prove that if the radial symmetry is taken into account, then the ranges of validity of the inequalities could be extended and such a radial improvement is possible if and only if $\alpha\>1$.

Summary

We haven't generated a summary for this paper yet.