Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of extremal functions for a family of Caffarelli-Kohn-Nirenberg inequalities (1504.00433v1)

Published 2 Apr 2015 in math.AP

Abstract: Consider the following inequalities due to Caffarelli, Kohn and Nirenberg {\it (Compositio Mathematica,1984):} $$\Big(\int_\Omega \frac{|u|r}{|x|s}dx\Big){\frac{1}{r}}\leq C(p,q,r,\mu,\sigma,s)\Big(\int_\Omega \frac{|\nabla u|p}{|x|\mu}dx\Big){\frac{a}{p}}\Big(\int_\Omega \frac{|u|q}{|x|\sigma}dx\Big){\frac{1-a}{q}},$$ where $\Omega \subset \RN (N\geq 2)$ is an open set; $p, q, r, \mu, \sigma, s, a$ are some parameters satisfying some balanced conditions. When $\Omega$ is a cone in $\RN$ (for example, $\Omega=\RN)$, we prove the sharp constant $C(p,q,r,\mu,\sigma,s)$ can be achieved for a very large parameter space. Besides, we find some sufficient conditions which guarantee that the following Sobolev spaces $$W_{\mu}{1,p}(\Omega),\; W_{\mu}{1,p}(\Omega)\cap Lp(\Omega), \; H{1,p}(\RN) $$ are compactly embedded into $Lr(\RN, \frac{dx}{|x|s})$ for some new ranges of parameters, where $\displaystyle W_{\mu}{1,p}(\Omega)$ is the completion of $C_0\infty(\Omega)$ with respect to the norm $\displaystyle \Big(\int_\Omega \frac{ |\nabla u|p}{|x|\mu}dx\Big){\frac{1}{p}}. $ As applications, we also study the equation $$\displaystyle -div\Big(\frac{|\nabla u|{p-2}\nabla u}{|x|\mu}\Big)=\lambda V(x)|u|{q-2}u, \;\;\; u\in W_{\mu}{1,p}(\Omega)$$ under some proper conditions on $V(x)$.

Summary

We haven't generated a summary for this paper yet.