Papers
Topics
Authors
Recent
2000 character limit reached

Making a Case for Learning Motion Representations with Phase

Published 6 Sep 2016 in cs.CV | (1609.01693v2)

Abstract: This work advocates Eulerian motion representation learning over the current standard Lagrangian optical flow model. Eulerian motion is well captured by using phase, as obtained by decomposing the image through a complex-steerable pyramid. We discuss the gain of Eulerian motion in a set of practical use cases: (i) action recognition, (ii) motion prediction in static images, (iii) motion transfer in static images and, (iv) motion transfer in video. For each task we motivate the phase-based direction and provide a possible approach.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.