Papers
Topics
Authors
Recent
2000 character limit reached

Using phase instead of optical flow for action recognition

Published 10 Sep 2018 in cs.CV | (1809.03258v2)

Abstract: Currently, the most common motion representation for action recognition is optical flow. Optical flow is based on particle tracking which adheres to a Lagrangian perspective on dynamics. In contrast to the Lagrangian perspective, the Eulerian model of dynamics does not track, but describes local changes. For video, an Eulerian phase-based motion representation, using complex steerable filters, has been successfully employed recently for motion magnification and video frame interpolation. Inspired by these previous works, here, we proposes learning Eulerian motion representations in a deep architecture for action recognition. We learn filters in the complex domain in an end-to-end manner. We design these complex filters to resemble complex Gabor filters, typically employed for phase-information extraction. We propose a phase-information extraction module, based on these complex filters, that can be used in any network architecture for extracting Eulerian representations. We experimentally analyze the added value of Eulerian motion representations, as extracted by our proposed phase extraction module, and compare with existing motion representations based on optical flow, on the UCF101 dataset.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.