Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Hand Gesture Recognition for Wearable Devices with Low Complexity Recurrent Neural Networks (1608.04080v1)

Published 14 Aug 2016 in cs.CV and cs.LG

Abstract: Gesture recognition is a very essential technology for many wearable devices. While previous algorithms are mostly based on statistical methods including the hidden Markov model, we develop two dynamic hand gesture recognition techniques using low complexity recurrent neural network (RNN) algorithms. One is based on video signal and employs a combined structure of a convolutional neural network (CNN) and an RNN. The other uses accelerometer data and only requires an RNN. Fixed-point optimization that quantizes most of the weights into two bits is conducted to optimize the amount of memory size for weight storage and reduce the power consumption in hardware and software based implementations.

Citations (40)

Summary

We haven't generated a summary for this paper yet.