Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Human Gesture Recognition using Recurrent Neural Networks and Wearable Sensors (1810.11297v1)

Published 26 Oct 2018 in cs.RO

Abstract: Gestures are a natural communication modality for humans. The ability to interpret gestures is fundamental for robots aiming to naturally interact with humans. Wearable sensors are promising to monitor human activity, in particular the usage of triaxial accelerometers for gesture recognition have been explored. Despite this, the state of the art presents lack of systems for reliable online gesture recognition using accelerometer data. The article proposes SLOTH, an architecture for online gesture recognition, based on a wearable triaxial accelerometer, a Recurrent Neural Network (RNN) probabilistic classifier and a procedure for continuous gesture detection, relying on modelling gesture probabilities, that guarantees (i) good recognition results in terms of precision and recall, (ii) immediate system reactivity.

Citations (25)

Summary

We haven't generated a summary for this paper yet.