Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion Feature Augmented Recurrent Neural Network for Skeleton-based Dynamic Hand Gesture Recognition (1708.03278v1)

Published 10 Aug 2017 in cs.CV

Abstract: Dynamic hand gesture recognition has attracted increasing interests because of its importance for human computer interaction. In this paper, we propose a new motion feature augmented recurrent neural network for skeleton-based dynamic hand gesture recognition. Finger motion features are extracted to describe finger movements and global motion features are utilized to represent the global movement of hand skeleton. These motion features are then fed into a bidirectional recurrent neural network (RNN) along with the skeleton sequence, which can augment the motion features for RNN and improve the classification performance. Experiments demonstrate that our proposed method is effective and outperforms start-of-the-art methods.

Citations (78)

Summary

We haven't generated a summary for this paper yet.