Forman-Ricci flow for change detection in large dynamic data sets (1604.06634v2)
Abstract: We present a viable solution to the challenging question of change detection in complex networks inferred from large dynamic data sets. Building on Forman's discretization of the classical notion of Ricci curvature, we introduce a novel geometric method to characterize different types of real-world networks with an emphasis on peer-to-peer networks. Furthermore we adapt the classical Ricci flow that already proved to be a powerful tool in image processing and graphics, to the case of undirected and weighted networks. The application of the proposed method on peer-to-peer networks yields insights into topological properties and the structure of their underlying data.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.