Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble of Deep Convolutional Neural Networks for Learning to Detect Retinal Vessels in Fundus Images (1603.04833v1)

Published 15 Mar 2016 in cs.LG, cs.CV, and stat.ML

Abstract: Vision impairment due to pathological damage of the retina can largely be prevented through periodic screening using fundus color imaging. However the challenge with large scale screening is the inability to exhaustively detect fine blood vessels crucial to disease diagnosis. In this work we present a computational imaging framework using deep and ensemble learning for reliable detection of blood vessels in fundus color images. An ensemble of deep convolutional neural networks is trained to segment vessel and non-vessel areas of a color fundus image. During inference, the responses of the individual ConvNets of the ensemble are averaged to form the final segmentation. In experimental evaluation with the DRIVE database, we achieve the objective of vessel detection with maximum average accuracy of 94.7\% and area under ROC curve of 0.9283.

Citations (127)

Summary

We haven't generated a summary for this paper yet.