Papers
Topics
Authors
Recent
2000 character limit reached

On the structure of the power graph and the enhanced power graph of a group (1603.04337v1)

Published 14 Mar 2016 in math.CO and math.GR

Abstract: Let $G$ be a group. The \emph{power graph} of $G$ is a graph with the vertex set $G$, having an edge between two elements whenever one is a power of the other. We characterize nilpotent groups whose power graphs have finite independence number. For a bounded exponent group, we prove its power graph is a perfect graph and we determine its clique/chromatic number. Furthermore, it is proved that for every group $G$, the clique number of the power graph of $G$ is at most countably infinite. We also measure how close the power graph is to the \emph{commuting graph} by introducing a new graph which lies in between. We call this new graph as the \emph{enhanced power graph}. For an arbitrary pair of these three graphs we characterize finite groups for which this pair of graphs are equal.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.