Papers
Topics
Authors
Recent
2000 character limit reached

Super graphs on groups, I (2112.02395v1)

Published 4 Dec 2021 in math.CO and math.GR

Abstract: Let $G$ be a finite group. A number of graphs with the vertex set $G$ have been studied, including the power graph, enhanced power graph, and commuting graph. These graphs form a hierarchy under the inclusion of edge sets, and it is useful to study them together. In addition, several authors have considered modifying the definition of these graphs by choosing a natural equivalence relation on the group such as equality, conjugacy, or equal orders, and joining two elements if there are elements in their equivalence class that are adjacent in the original graph. In this way, we enlarge the hierarchy into a second dimension. Using the three graph types and three equivalence relations mentioned gives nine graphs, of which in general only two coincide; we find conditions on the group for some other pairs to be equal. These often define interesting classes of groups, such as EPPO groups, $2$-Engel groups, and Dedekind groups. We study some properties of graphs in this new hierarchy. In particular, we characterize the groups for which the graphs are complete, and in most cases, we characterize the dominant vertices (those joined to all others). Also, we give some results about universality, perfectness, and clique number. The paper ends with some open problems and suggestions for further work.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.