Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Enhanced Power Graphs of Finite Groups (1810.07627v1)

Published 17 Oct 2018 in math.CO

Abstract: The enhanced power graph $\mathcal G_e(\mathbf G)$ of a group $\mathbf G$ is the graph with vertex set $G$ such that two vertices $x$ and $y$ are adjacent if they are contained in a same cyclic subgroup. We prove that finite groups with isomorphic enhanced power graphs have isomorphic directed power graphs. We show that any isomorphism between power graphs of finite groups is an isomorhism between enhanced power graphs of these groups, and we find all finite groups $\mathbf G$ for which $\mathrm{Aut}(\mathcal G_e(\mathbf G)$ is abelian, all finite groups $\mathbf G$ with $\lvert\mathrm{Aut}(\mathcal G_e(\mathbf G)\rvert$ being prime power, and all finite groups $\mathbf G$ with $\lvert\mathrm{Aut}(\mathcal G_e(\mathbf G)\rvert$ being square free. Also we describe enhanced power graphs of finite abelian groups. Finally, we give a characterization of finite nilpotent groups whose enhanced power graphs are perfect, and we present a sufficient condition for a finite group to have weakly perfect enhanced power graph.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.