2000 character limit reached
Extremal results for random discrete structures (1603.00894v2)
Published 2 Mar 2016 in math.CO
Abstract: We study thresholds for extremal properties of random discrete structures. We determine the threshold for Szemer\'edi's theorem on arithmetic progressions in random subsets of the integers and its multidimensional extensions and we determine the threshold for Tur\'an-type problems for random graphs and hypergraphs. In particular, we verify a conjecture of Kohayakawa, \L uczak, and R\"odl for Tur\'an-type problems in random graphs. Similar results were obtained by Conlon and Gowers.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.