A sharp threshold for van der Waerden's theorem in random subsets (1512.05921v3)
Abstract: We establish sharpness for the threshold of van der Waerden's theorem in random subsets of $\mathbb{Z}/n\mathbb{Z}$. More precisely, for $k\geq 3$ and $Z\subseteq \mathbb{Z}/n\mathbb{Z}$ we say $Z$ has the van der Waerden property if any two-colouring of $Z$ yields a monochromatic arithmetic progression of length $k$. R\"odl and Ruci\'nski (1995) determined the threshold for this property for any k and we show that this threshold is sharp. The proof is based on Friedgut's criteria (1999) for sharp thresholds, and on the recently developed container method for independent sets in hypergraphs by Balogh, Morris and Samotij (2015) and by Saxton and Thomason (2015).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.