Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Symmetric and asymmetric Ramsey properties in random hypergraphs (1610.00935v1)

Published 4 Oct 2016 in math.CO

Abstract: A celebrated result of R\"odl and Ruci\'nski states that for every graph $F$, which is not a forest of stars and paths of length $3$, and fixed number of colours $r\ge 2$ there exist positive constants $c, C$ such that for $p \leq cn{-1/m_2(F)}$ the probability that every colouring of the edges of the random graph $G(n,p)$ contains a monochromatic copy of $F$ is $o(1)$ (the "0-statement"), while for $p \geq Cn{-1/m_2(F)}$ it is $1-o(1)$ (the "1-statement"). Here $m_2(F)$ denotes the $2$-density of $F$. On the other hand, the case where $F$ is a forest of stars has a coarse threshold which is determined by the appearance of a certain small subgraph in $G(n, p)$. Recently, the natural extension of the 1-statement of this theorem to $k$-uniform hypergraphs was proved by Conlon and Gowers and, independently, by Friedgut, R\"odl and Schacht. In particular, they showed an upper bound of order $n{-1/m_k(F)}$ for the $1$-statement, where $m_k(F)$ denotes the $k$-density of $F$. Similarly as in the graph case, it is known that the threshold for star-like hypergraphs is given by the appearance of small subgraphs. In this paper we show that another type of thresholds exists if $k \ge 4:$ there are $k$-uniform hypergraphs for which the threshold is determined by the asymmetric Ramsey problem in which a different hypergraph has to be avoided in each colour-class. Along the way we obtain a general bound on the $1$-statement for asymmetric Ramsey properties in random hypergraphs. This extends the work of Kohayakawa and Kreuter, and of Kohayakawa, Schacht and Sp\"ohel who showed a similar result in the graph case. We prove the corresponding 0-statement for hypergraphs satisfying certain balancedness conditions.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.