Cutset Width and Spacing for Reduced Cutset Coding of Markov Random Fields (1602.04835v4)
Abstract: In this paper we explore tradeoffs, regarding coding performance, between the thickness and spacing of the cutset used in Reduced Cutset Coding (RCC) of a Markov random field image model. Considering MRF models on a square lattice of sites, we show that under a stationarity condition, increasing the thickness of the cutset reduces coding rate for the cutset, increasing the spacing between components of the cutset increases the coding rate of the non-cutset pixels, though the coding rate of the latter is always strictly less than that of the former. We show that the redundancy of RCC can be decomposed into two terms, a correlation redundancy due to coding the components of the cutset independently, and a distribution redundancy due to coding the cutset as a reduced MRF. We provide analysis of these two sources of redundancy. We present results from numerical simulations with a homogeneous Ising model that bear out the analytical results. We also present a consistent estimation algorithm for the moment-matching reduced MRF on the cutset.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.