2000 character limit reached
A Latent-Variable Lattice Model (1512.07587v7)
Published 23 Dec 2015 in cs.LG, cs.CV, and stat.ML
Abstract: Markov random field (MRF) learning is intractable, and its approximation algorithms are computationally expensive. We target a small subset of MRF that is used frequently in computer vision. We characterize this subset with three concepts: Lattice, Homogeneity, and Inertia; and design a non-markov model as an alternative. Our goal is robust learning from small datasets. Our learning algorithm uses vector quantization and, at time complexity O(U log U) for a dataset of U pixels, is much faster than that of general-purpose MRF.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.