Variational formulas for the power of the binary hypothesis testing problem with applications (1601.06810v1)
Abstract: Two variational formulas for the power of the binary hypothesis testing problem are derived. The first is given as the Legendre transform of a certain function and the second, induced from the first, is given in terms of the Cumulative Distribution Function (CDF) of the log-likelihood ratio. One application of the first formula is an upper bound on the power of the binary hypothesis testing problem in terms of the Re'nyi divergence. The second formula provide a general framework for proving asymptotic and non-asymptotic expressions for the power of the test utilizing corresponding expressions for the CDF of the log-likelihood. The framework is demonstrated in the central limit regime (i.e., for non-vanishing type I error) and in the large deviations regime.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.