Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sub-Gaussian Error Bounds for Hypothesis Testing (2101.00136v1)

Published 1 Jan 2021 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: We interpret likelihood-based test functions from a geometric perspective where the Kullback-Leibler (KL) divergence is adopted to quantify the distance from a distribution to another. Such a test function can be seen as a sub-Gaussian random variable, and we propose a principled way to calculate its corresponding sub-Gaussian norm. Then an error bound for binary hypothesis testing can be obtained in terms of the sub-Gaussian norm and the KL divergence, which is more informative than Pinsker's bound when the significance level is prescribed. For $M$-ary hypothesis testing, we also derive an error bound which is complementary to Fano's inequality by being more informative when the number of hypotheses or the sample size is not large.

Citations (1)

Summary

We haven't generated a summary for this paper yet.