Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotics of Sequential Composite Hypothesis Testing under Probabilistic Constraints (2106.00896v2)

Published 2 Jun 2021 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: We consider the sequential composite binary hypothesis testing problem in which one of the hypotheses is governed by a single distribution while the other is governed by a family of distributions whose parameters belong to a known set $\Gamma$. We would like to design a test to decide which hypothesis is in effect. Under the constraints that the probabilities that the length of the test, a stopping time, exceeds $n$ are bounded by a certain threshold $\epsilon$, we obtain certain fundamental limits on the asymptotic behavior of the sequential test as $n$ tends to infinity. Assuming that $\Gamma$ is a convex and compact set, we obtain the set of all first-order error exponents for the problem. We also prove a strong converse. Additionally, we obtain the set of second-order error exponents under the assumption that $\mathcal{X}$ is a finite alphabet. In the proof of second-order asymptotics, a main technical contribution is the derivation of a central limit-type result for a maximum of an uncountable set of log-likelihood ratios under suitable conditions. This result may be of independent interest. We also show that some important statistical models satisfy the conditions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.