Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Approximating Stochastic Evolution Equations with Additive White and Rough Noises (1601.02085v3)

Published 9 Jan 2016 in math.NA

Abstract: In this paper, we analyze Galerkin approximations for stochastic evolution equations driven by an additive Gaussian noise which is temporally white and spatially fractional with Hurst index less than or equal to $1/2$. First we regularize the noise by the Wong-Zakai approximation and obtain its optimal order of convergence. Then we apply the Galerkin method to discretize the stochastic evolution equations with regularized noises. Optimal error estimates are obtained for the Galerkin approximations. In particular, our error estimates remove an infinitesimal factor which appears in the error estimates of various numerical methods for stochastic evolution equations in existing literatures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.