Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Galerkin Finite Element Approximations for Stochastic Space-Time Fractional Wave Equations (1602.08812v1)

Published 29 Feb 2016 in math.NA

Abstract: The traditional wave equation models wave propagation in an ideal conducting medium. For characterizing the wave propagation in inhomogeneous media with frequency dependent power-law attenuation, the space-time fractional wave equation appears; further incorporating the additive white Gaussian noise coming from many natural sources leads to the stochastic space-time fractional wave equation. This paper discusses the Galerkin finite element approximations for the stochastic space-time fractional wave equation forced by an additive space-time white noise. We firstly discretize the space-time additive noise, which introduces a modeling error and results in a regularized stochastic space-time fractional wave equation; then the regularity of the regularized equation is analyzed. For the discretization in space, the finite element approximation is used and the definition of the discrete fractional Laplacian is introduced. We derive the mean-squared $L2$-norm priori estimates for the modeling error and for the approximation error to the solution of the regularized problem; and the numerical experiments are performed to confirm the estimates. For the time-stepping, we calculate the analytically obtained Mittag-Leffler type function.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.