Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data-adaptive estimation of time-varying spectral densities (1512.00825v3)

Published 2 Dec 2015 in stat.CO and stat.ME

Abstract: This paper introduces a data-adaptive non-parametric approach for the estimation of time-varying spectral densities from nonstationary time series. Time-varying spectral densities are commonly estimated by local kernel smoothing. The performance of these nonparametric estimators, however, depends crucially on the smoothing bandwidths that need to be specified in both time and frequency direction. As an alternative and extension to traditional bandwidth selection methods, we propose an iterative algorithm for constructing localized smoothing kernels data-adaptively. The main idea, inspired by the concept of propagation-separation (Polzehl and Spokoiny 2006), is to determine for a point in the time-frequency plane the largest local vicinity over which smoothing is justified by the data. By shaping the smoothing kernels nonparametrically, our method not only avoids the problem of bandwidth selection in the strict sense but also becomes more flexible. It not only adapts to changing curvature in smoothly varying spectra but also adjusts for structural breaks in the time-varying spectrum.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.