Papers
Topics
Authors
Recent
2000 character limit reached

Smoothing splines with varying smoothing parameter

Published 8 Jun 2013 in math.ST, stat.ME, and stat.TH | (1306.1868v1)

Abstract: This paper considers the development of spatially adaptive smoothing splines for the estimation of a regression function with non-homogeneous smoothness across the domain. Two challenging issues that arise in this context are the evaluation of the equivalent kernel and the determination of a local penalty. The roughness penalty is a function of the design points in order to accommodate local behavior of the regression function. It is shown that the spatially adaptive smoothing spline estimator is approximately a kernel estimator. The resulting equivalent kernel is spatially dependent. The equivalent kernels for traditional smoothing splines are a special case of this general solution. With the aid of the Green's function for a two-point boundary value problem, the explicit forms of the asymptotic mean and variance are obtained for any interior point. Thus, the optimal roughness penalty function is obtained by approximately minimizing the asymptotic integrated mean square error. Simulation results and an application illustrate the performance of the proposed estimator.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.