Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimally adaptive Bayesian spectral density estimation for stationary and nonstationary processes

Published 4 Mar 2020 in stat.ME, physics.data-an, and stat.ML | (2003.02367v3)

Abstract: This article improves on existing methods to estimate the spectral density of stationary and nonstationary time series assuming a Gaussian process prior. By optimising an appropriate eigendecomposition using a smoothing spline covariance structure, our method more appropriately models data with both simple and complex periodic structure. We further justify the utility of this optimal eigendecomposition by investigating the performance of alternative covariance functions other than smoothing splines. We show that the optimal eigendecomposition provides a material improvement, while the other covariance functions under examination do not, all performing comparatively well as the smoothing spline. During our computational investigation, we introduce new validation metrics for the spectral density estimate, inspired from the physical sciences. We validate our models in an extensive simulation study and demonstrate superior performance with real data.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.