Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adaptive Frequency Band Analysis for Functional Time Series (2102.01784v2)

Published 2 Feb 2021 in stat.ME, math.ST, stat.AP, stat.CO, and stat.TH

Abstract: The frequency-domain properties of nonstationary functional time series often contain valuable information. These properties are characterized through its time-varying power spectrum. Practitioners seeking low-dimensional summary measures of the power spectrum often partition frequencies into bands and create collapsed measures of power within bands. However, standard frequency bands have largely been developed through manual inspection of time series data and may not adequately summarize power spectra. In this article, we propose a framework for adaptive frequency band estimation of nonstationary functional time series that optimally summarizes the time-varying dynamics of the series. We develop a scan statistic and search algorithm to detect changes in the frequency domain. We establish theoretical properties of this framework and develop a computationally-efficient implementation. The validity of our method is also justified through numerous simulation studies and an application to analyzing electroencephalogram data in participants alternating between eyes open and eyes closed conditions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube