Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry and Determinism of Optimal Stationary Control in Partially Observable Markov Decision Processes (1503.07206v2)

Published 24 Mar 2015 in math.OC and cs.AI

Abstract: It is well known that for any finite state Markov decision process (MDP) there is a memoryless deterministic policy that maximizes the expected reward. For partially observable Markov decision processes (POMDPs), optimal memoryless policies are generally stochastic. We study the expected reward optimization problem over the set of memoryless stochastic policies. We formulate this as a constrained linear optimization problem and develop a corresponding geometric framework. We show that any POMDP has an optimal memoryless policy of limited stochasticity, which allows us to reduce the dimensionality of the search space. Experiments demonstrate that this approach enables better and faster convergence of the policy gradient on the evaluated systems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.