Papers
Topics
Authors
Recent
2000 character limit reached

Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas (1503.03305v3)

Published 11 Mar 2015 in stat.ME

Abstract: Practical applications of nonparametric density estimators in more than three dimensions suffer a great deal from the well-known curse of dimensionality: convergence slows down as dimension increases. We show that one can evade the curse of dimensionality by assuming a simplified vine copula model for the dependence between variables. We formulate a general nonparametric estimator for such a model and show under high-level assumptions that the speed of convergence is independent of dimension. We further discuss a particular implementation for which we validate the high-level assumptions and establish its asymptotic normality. Simulation experiments illustrate a large gain in finite sample performance when the simplifying assumption is at least approximately true. But even when it is severely violated, the vine copula based approach proves advantageous as soon as more than a few variables are involved. Lastly, we give an application of the estimator to a classification problem from astrophysics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.