Papers
Topics
Authors
Recent
2000 character limit reached

Testing the simplifying assumption in high-dimensional vine copulas (1706.02338v4)

Published 7 Jun 2017 in stat.ME

Abstract: Testing the simplifying assumption in high-dimensional vine copulas is a difficult task. Tests must be based on estimated observations and check constraints on high-dimensional distributions. So far, corresponding tests have been limited to single conditional copulas with a low-dimensional set of conditioning variables. We propose a novel testing procedure that is computationally feasible for high-dimensional data sets and that exhibits a power that decreases only slightly with the dimension. By discretizing the support of the conditioning variables and incorporating a penalty in the test statistic, we mitigate the curse of dimensionality by looking for the possibly strongest deviation from the simplifying assumption. The use of a decision tree renders the test computationally feasible for large dimensions. We derive the asymptotic distribution of the test and analyze its finite sample performance in an extensive simulation study. An application of the test to four real data sets is provided.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.