Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The equivariant Minkowski problem in Minkowski space (1405.4376v3)

Published 17 May 2014 in math.DG

Abstract: The classical Minkowski problem in Minkowski space asks, for a positive function $\phi$ on $\mathbb{H}d$, for a convex set $K$ in Minkowski space with $C2$ space-like boundary $S$, such that $\phi(\eta){-1}$ is the Gauss--Kronecker curvature at the point with normal $\eta$. Analogously to the Euclidean case, it is possible to formulate a weak version of this problem: given a Radon measure $\mu$ on $\mathbb{H}d$ the generalized Minkowski problem in Minkowski space asks for a convex subset $K$ such that the area measure of $K$ is $\mu$. In the present paper we look at an equivariant version of the problem: given a uniform lattice $\Gamma$ of isometries of $\mathbb{H}d$, given a $\Gamma$ invariant Radon measure $\mu$, given a isometry group $\Gamma_{\tau}$ of Minkowski space, with $\Gamma$ as linear part, there exists a unique convex set with area measure $\mu$, invariant under the action of $\Gamma_{\tau}$. The proof uses a functional which is the covolume associated to every invariant convex set. This result translates as a solution of the Minkowski problem in flat space times with compact hyperbolic Cauchy surface. The uniqueness part, as well as regularity results, follow from properties of the Monge--Amp`ere equation. The existence part can be translated as an existence result for Monge--Amp`ere equation. The regular version was proved by T.~Barbot, F.~B\'eguin and A.~Zeghib for $d=2$ and by V.~Oliker and U.~Simon for $\Gamma_{\tau}=\Gamma$. Our method is totally different. Moreover, we show that those cases are very specific: in general, there is no smooth $\Gamma_\tau$-invariant surface of constant Gauss-Kronecker curvature equal to $1$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.