Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L^p$-Minkowski Problem under Curvature Pinching (2307.16484v2)

Published 31 Jul 2023 in math.DG and math.FA

Abstract: Let $K$ be a smooth, origin-symmetric, strictly convex body in $\mathbb{R}n$. If for some $\ell\in GL(n,\mathbb{R})$, the anisotropic Riemannian metric $\frac{1}{2}D2 \Vert\cdot\Vert_{\ell K}2$, encapsulating the curvature of $\ell K$, is comparable to the standard Euclidean metric of $\mathbb{R}{n}$ up-to a factor of $\gamma > 1$, we show that $K$ satisfies the even $Lp$-Minkowski inequality and uniqueness in the even $Lp$-Minkowski problem for all $p \geq p_\gamma := 1 - \frac{n+1}{\gamma}$. This result is sharp as $\gamma \searrow 1$ (characterizing centered ellipsoids in the limit) and improves upon the classical Minkowski inequality for all $\gamma < \infty$. In particular, whenever $\gamma \leq n+1$, the even log-Minkowski inequality and uniqueness in the even log-Minkowski problem hold.

Citations (7)

Summary

We haven't generated a summary for this paper yet.