Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Lorentzian area measures and the Christoffel problem (1302.6169v2)

Published 25 Feb 2013 in math.DG

Abstract: We introduce a particular class of unbounded closed convex sets of $\R{d+1}$, called F-convex sets (F stands for future). To define them, we use the Minkowski bilinear form of signature $(+,...,+,-)$ instead of the usual scalar product, and we ask the Gauss map to be a surjection onto the hyperbolic space $\Hd$. Important examples are embeddings of the universal cover of so-called globally hyperbolic maximal flat Lorentzian manifolds. Basic tools are first derived, similarly to the classical study of convex bodies. For example, F-convex sets are determined by their support function, which is defined on $\Hd$. Then the area measures of order $i$, $0\leq i\leq d$ are defined. As in the convex bodies case, they are the coefficients of the polynomial in $\epsilon$ which is the volume of an $\epsilon$ approximation of the convex set. Here the area measures are defined with respect to the Lorentzian structure. Then we focus on the area measure of order one. Finding necessary and sufficient conditions for a measure (here on $\Hd$) to be the first area measure of a F-convex set is the Christoffel Problem. We derive many results about this problem. If we restrict to "Fuchsian" F-convex set (those who are invariant under linear isometries acting cocompactly on $\Hd$), then the problem is totally solved, analogously to the case of convex bodies. In this case the measure can be given on a compact hyperbolic manifold. Particular attention is given on the smooth and polyhedral cases. In those cases, the Christoffel problem is equivalent to prescribing the mean radius of curvature and the edge lengths respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.