An Improved Algorithm for Fixed-Hub Single Allocation Problem
Abstract: This paper discusses the fixed-hub single allocation problem (FHSAP). In this problem, a network consists of hub nodes and terminal nodes. Hubs are fixed and fully connected; each terminal node is connected to a single hub which routes all its traffic. The goal is to minimize the cost of routing the traffic in the network. In this paper, we propose a linear programming (LP)-based rounding algorithm. The algorithm is based on two ideas. First, we modify the LP relaxation formulation introduced in Ernst and Krishnamoorthy (1996, 1999) by incorporating a set of validity constraints. Then, after obtaining a fractional solution to the LP relaxation, we make use of a geometric rounding algorithm to obtain an integral solution. We show that by incorporating the validity constraints, the strengthened LP often provides much tighter upper bounds than the previous methods with a little more computational effort, and the solution obtained often has a much smaller gap with the optimal solution. We also formulate a robust version of the FHSAP and show that it can guard against data uncertainty with little cost.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.