Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A constant-ratio approximation algorithm for a class of hub-and-spoke network design problems and metric labeling problems: star metric case (1803.06114v1)

Published 16 Mar 2018 in cs.DM and cs.DS

Abstract: Transportation networks frequently employ hub-and-spoke network architectures to route flows between many origin and destination pairs. Hub facilities work as switching points for flows in large networks. In this study, we deal with a problem, called the single allocation hub-and-spoke network design problem. In the problem, the goal is to allocate each non-hub node to exactly one of given hub nodes so as to minimize the total transportation cost. The problem is essentially equivalent to another combinatorial optimization problem, called the metric labeling problem. The metric labeling problem was first introduced by Kleinberg and Tardos in 2002, motivated by application to segmentation problems in computer vision and related areas. In this study, we deal with the case where the set of hubs forms a star, which arises especially in telecommunication networks. We propose a polynomial-time randomized approximation algorithm for the problem, whose approximation ratio is less than 5.281. Our algorithms solve a linear relaxation problem and apply dependent rounding procedures.

Summary

We haven't generated a summary for this paper yet.