Papers
Topics
Authors
Recent
Search
2000 character limit reached

Local Convergence of an Algorithm for Subspace Identification from Partial Data

Published 14 Jun 2013 in cs.NA and math.NA | (1306.3391v2)

Abstract: GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an iterative algorithm for identifying a linear subspace of Rn from data consisting of partial observations of random vectors from that subspace. This paper examines local convergence properties of GROUSE, under assumptions on the randomness of the observed vectors, the randomness of the subset of elements observed at each iteration, and incoherence of the subspace with the coordinate directions. Convergence at an expected linear rate is demonstrated under certain assumptions. The case in which the full random vector is revealed at each iteration allows for much simpler analysis, and is also described. GROUSE is related to incremental SVD methods and to gradient projection algorithms in optimization.

Citations (57)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.