Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subspace Estimation from Incomplete Observations: A High-Dimensional Analysis (1805.06834v3)

Published 17 May 2018 in cs.LG, cond-mat.dis-nn, cs.IT, math.IT, and stat.ML

Abstract: We present a high-dimensional analysis of three popular algorithms, namely, Oja's method, GROUSE and PETRELS, for subspace estimation from streaming and highly incomplete observations. We show that, with proper time scaling, the time-varying principal angles between the true subspace and its estimates given by the algorithms converge weakly to deterministic processes when the ambient dimension $n$ tends to infinity. Moreover, the limiting processes can be exactly characterized as the unique solutions of certain ordinary differential equations (ODEs). A finite sample bound is also given, showing that the rate of convergence towards such limits is $\mathcal{O}(1/\sqrt{n})$. In addition to providing asymptotically exact predictions of the dynamic performance of the algorithms, our high-dimensional analysis yields several insights, including an asymptotic equivalence between Oja's method and GROUSE, and a precise scaling relationship linking the amount of missing data to the signal-to-noise ratio. By analyzing the solutions of the limiting ODEs, we also establish phase transition phenomena associated with the steady-state performance of these techniques.

Citations (17)

Summary

We haven't generated a summary for this paper yet.