2000 character limit reached
Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the Second Kind (1302.6047v1)
Published 25 Feb 2013 in math.PR
Abstract: Fractional Ornstein-Uhlenbeck process of the second kind $(\text{fOU}{2})$ is solution of the Langevin equation $\mathrm{d}X_t = -\theta X_t\,\mathrm{d}t+\mathrm{d}Y_t{(1)}, \ \theta >0$ with driving noise $ Y_t{(1)} := \intt_0 e{-s} \,\mathrm{d}B{a_s}; \ a_t= H e{\frac{t}{H}}$ where $B$ is a fractional Brownian motion with Hurst parameter $H \in (0,1)$. In this article, in the case $H>1/2$, we prove that the least squares estimator $\hat{\theta}_T$ introduced in [\cite{h-n}, Statist. Probab. Lett. 80, no. 11-12, 1030-1038], provides a consistent estimator. Moreover, using central limit theorem for multiple Wiener integrals, we prove asymptotic normality of the estimator valid for the whole range $H \in(1/2,1)$.