Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter estimation based on discrete observations of fractional Ornstein-Uhlenbeck process of the second kind (1304.2466v5)

Published 9 Apr 2013 in math.PR

Abstract: Fractional Ornstein-Uhlenbeck process of the second kind $(\text{fOU}{2})$ is solution of the Langevin equation $\mathrm{d}X_t = -\theta X_t\,\mathrm{d}t+\mathrm{d}Y_t{(1)}, \ \theta >0$ with Gaussian driving noise $ Y_t{(1)} := \intt_0 e{-s} \,\mathrm{d}B{a_s}$, where $ a_t= H e{\frac{t}{H}}$ and $B$ is a fractional Brownian motion with Hurst parameter $H \in (0,1)$. In this article, we consider the case $H>\frac{1}{2}$. Then using the ergodicity of $\text{fOU}_{2}$ process, we construct consistent estimators of drift parameter $\theta$ based on discrete observations in two possible cases: $(i)$ the Hurst parameter $H$ is known and $(ii)$ the Hurst parameter $H$ is unknown. Moreover, using Malliavin calculus technique, we prove central limit theorems for our estimators which is valid for the whole range $H \in (\frac{1}{2},1)$.

Summary

We haven't generated a summary for this paper yet.