Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying trends in word frequency dynamics (1302.3892v1)

Published 15 Feb 2013 in physics.soc-ph, cond-mat.dis-nn, cs.CL, and q-bio.PE

Abstract: The word-stock of a language is a complex dynamical system in which words can be created, evolve, and become extinct. Even more dynamic are the short-term fluctuations in word usage by individuals in a population. Building on the recent demonstration that word niche is a strong determinant of future rise or fall in word frequency, here we introduce a model that allows us to distinguish persistent from temporary increases in frequency. Our model is illustrated using a 108-word database from an online discussion group and a 1011-word collection of digitized books. The model reveals a strong relation between changes in word dissemination and changes in frequency. Aside from their implications for short-term word frequency dynamics, these observations are potentially important for language evolution as new words must survive in the short term in order to survive in the long term.

Citations (14)

Summary

We haven't generated a summary for this paper yet.