Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neutral evolution and turnover over centuries of English word popularity (1703.10698v1)

Published 30 Mar 2017 in cs.CL and physics.soc-ph

Abstract: Here we test Neutral models against the evolution of English word frequency and vocabulary at the population scale, as recorded in annual word frequencies from three centuries of English language books. Against these data, we test both static and dynamic predictions of two neutral models, including the relation between corpus size and vocabulary size, frequency distributions, and turnover within those frequency distributions. Although a commonly used Neutral model fails to replicate all these emergent properties at once, we find that modified two-stage Neutral model does replicate the static and dynamic properties of the corpus data. This two-stage model is meant to represent a relatively small corpus (population) of English books, analogous to a `canon', sampled by an exponentially increasing corpus of books in the wider population of authors. More broadly, this mode -- a smaller neutral model within a larger neutral model -- could represent more broadly those situations where mass attention is focused on a small subset of the cultural variants.

Citations (2)

Summary

We haven't generated a summary for this paper yet.