Papers
Topics
Authors
Recent
2000 character limit reached

Conditional inference in parametric models (1202.0944v1)

Published 5 Feb 2012 in stat.AP

Abstract: This paper presents a new approach to conditional inference, based on the simulation of samples conditioned by a statistics of the data. Also an explicit expression for the approximation of the conditional likelihood of long runs of the sample given the observed statistics is provided. It is shown that when the conditioning statistics is sufficient for a given parameter, the approximating density is still invariant with respect to the parameter. A new Rao-Blackwellisation procedure is proposed and simulation shows that Lehmann Scheff\'{e} Theorem is valid for this approximation. Conditional inference for exponential families with nuisance parameter is also studied, leading to Monte carlo tests. Finally the estimation of the parameter of interest through conditional likelihood is considered. Comparison with the parametric bootstrap method is discussed.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.