Parametric bootstrap inference for stratified models with high-dimensional nuisance specifications (2010.16186v2)
Abstract: Inference about a scalar parameter of interest typically relies on the asymptotic normality of common likelihood pivots, such as the signed likelihood root, the score and Wald statistics. Nevertheless, the resulting inferential procedures are known to perform poorly when the dimension of the nuisance parameter is large relative to the sample size and when the information about the parameters is limited. In many such cases, the use of asymptotic normality of analytical modifications of the signed likelihood root is known to recover inferential performance. It is proved here that parametric bootstrap of standard likelihood pivots results in as accurate inferences as analytical modifications of the signed likelihood root do in stratified models with stratum specific nuisance parameters. We focus on the challenging case where the number of strata increases as fast or faster than the stratum samples size. It is also shown that this equivalence holds regardless of whether constrained or unconstrained bootstrap is used. This is in contrast to when the number of strata is fixed or increases slower than the stratum sample size, where we show that constrained bootstrap corrects inference to a higher order than unconstrained bootstrap. Simulation experiments support the theoretical findings and demonstrate the excellent performance of bootstrap in extreme scenarios.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.